Measure Theory with Ergodic Horizons Lecture 27

Remark. When p and v are
$$\sigma$$
-finite measures on a measurable space (K, \mathcal{B}) , and
 $p \ll v$, then the Raclou-Nikolym derivative $\frac{dp}{dv}$ is v -intergeable $\leq v$ is finite;
Indeed, $p(K) = \int f dv$. However, when p is not timite bet σ -finite, we only get
that $X = \bigcup X = \bigcup X$. Such that $p(K_n) < \infty$, so $\int f dp$ is finite.

Remark. From a previous proposition about locally finite measures, we get that
for all locally compared second attal hopological spaces, TFAE:
(1) F is locally integrable
(2) I X = U Un, Un open, such that
$$\|f \cdot I_{Un}\|_{2} < \infty$$
.
(3) $\|f \cdot I_{k}\| < \infty$ for all compared k $\in X$.
In particular, this holds for \mathbb{R}^{d} .

Radon-Nikodyn desiratives wit Labesque measure and Labespere differentiation.

Let
$$\lambda$$
 denote the labesgue massive on \mathbb{R}^d and let μ be another locally finite
Borel measure on \mathbb{R}^d such that $\mu < \alpha \lambda$. Then we know that $\mu = \lambda_s$, where
 $f = \frac{d\mu}{d\lambda}$, but how to find this f explicitly?

We know that for any
$$x \in \mathbb{R}^d$$
, if $B_r(x)$ duales the doo-ball of cadius r
around x, then $\mu(B_r(x)) = \int f d\lambda$ so $\frac{\mu(B_r(k))}{\lambda(B_r(k))} = \frac{1}{\lambda(B_r(k))} \int f d\lambda$.
Since $\frac{dr}{d\lambda}$ measures the
cation of μ over λ "locally at x", it is conceivable he guess that maybe
him $\frac{\mu(B_r(x))}{\lambda(B_r(k))} = \frac{d\mu}{d\lambda}(x)$. This turns out to be true, i.e. ve dray "differen-
 $r = 0$ $\lambda(B_r(k)) = \frac{d\mu}{d\lambda}(x)$. This turns out to be true, i.e. ve dray "differen-
highter μ with respect to λ .

$$\frac{(lberge Different har Theorem. Let f \in L'_{loc}(\mathbb{R}^{d}, \lambda). They be a.e. x \in \mathbb{R}^{d},$$

$$\lim_{r \to 0} \frac{1}{\lambda(B_{r}(k))} \int_{B_{r}(k)}^{r} fd \lambda = f(x).$$
In particular, for any locally finite Borel measure μ on \mathbb{R}^{d} with $\mu \ll \lambda$,

$$\frac{l\mu}{d\lambda}(x) = \lim_{r \to 0} \frac{\nu(B_{r}(k))}{\lambda(B_{r}(k))} = a.e.$$

It
$$A_r f(k) := \frac{1}{\lambda(B_r(k))} \int f d\lambda denote the avecaging operator of radius r.$$

We want to prove $\lim_{r \to 0} A_r f = f$ a.e.

Lema. If
$$g: IR^{d} \rightarrow I^{2}$$
 is a continuous loc. integrable truction then

$$\lim_{k \to 0} A_{r}g = g \quad \text{everwhere.}$$

$$P_{coof.} |A_{r}f(x) - f(x)| = \frac{1}{\lambda(B_{r}(x))} \left| \int (f(y) - f(x)) d\lambda \right| \leq \frac{1}{\lambda(B_{r}(x))} \int |f(y) - f(x)| d\lambda$$

$$\leq \sup_{y \in B_{r}(x)} |f(y) - f(x)| \rightarrow 0 \quad \text{by working.}$$

Prod it hebesque differentiation. While, we may assume to
$$L^{(Rd, \lambda)}$$
 by replacing the with $A \otimes_{R_{1}(\overline{0})} f$; indeed, it has been holds for every well for $A \otimes_{R_{1}(\overline{0})} f$.
Were by combining has well at Ze bor all well, we shill get a will ad, here the have bolds for the ext \mathbb{R}^{R} (also usbe that it $x \in B_{1}(\overline{0})$ has $B_{1}(x) \wedge B_{R+1}(\overline{0}) = B_{1}(x)$ for all $r \leq 1$). A for $x \in R^{R}(x)$ is using the same $r = 1$ to $R^{R}(x) \wedge B_{R+1}(\overline{0}) = B_{1}(x)$ for all $r \leq 1$. A for $r = 0$ to $R^{R}(x) \wedge B_{R+1}(\overline{0}) = B_{1}(x)$ for all $r \leq 1$. A for $R = r \leq R^{R}(x)$ is using this to $-f$, we will get the same $r = 1$ to $R^{R}(x) - f(x) = 0$ is hall, because the $A = r + R^{R}(x) - R^{R}(x) - R^{R}(x) = 0$ is half. Because $O_{0} = \bigvee_{R = N^{R}} O_{1/R}(A^{R}+f)$, where $D_{1/R}(A^{R}+f)$ is mult for each $d > 0$. So fix $d > 0$ and $2 > 0$ is a flow that $\lambda(D_{1/R}(A^{R}+f)) \leq 5$.
Recall by a HW exercise that $a = 1$ with $||f| - g||_{1} \leq d$ for some $J = 0$ deparding on Σ and d , be be chosen labor. Note that: O $||A^{R}F-f|| = |A^{R}F-A^{R}g + A^{R}g - g + g - F| \leq |A^{R}F-A^{R}g| + |A^{R}g - g| + |g - f|$.
Huss, $D_{1/R}(A^{R}+f) \leq D_{d/2}(A^{R}(f-g)) \cup D_{d/2}(g - f)$. Thus, it's easyle to show that $|0|$ have measure $\leq 2/2$.

(a) By the byshev, $\frac{d}{2} \cdot \lambda(\partial_{d/2}(g-f)) \leq ||g-f||_1 \leq \delta$, so $\lambda(\partial_{d/2}(g-f)) \leq \frac{2\delta}{d}$

and here it we choose I so that
$$2J_2 \leq 2/2$$
, then $\lambda(\mathcal{D}_{d/2}(y,f)) \leq 2/2$.

$$\begin{array}{c} \alpha \cdot \lambda \left(\mathcal{N}_{d} \left(A^{\star} h \right) \right) \leq 3 \quad \| h \|_{1} \\ \text{En fact, } d \cdot \lambda \left(\mathcal{D}_{d} \left(\overline{A} h \right) \right) \leq 3 \quad \| h \|_{1} \\ \text{Hardy-little wood maximal function.} \\ \text{Proof. Denote } \mathcal{D} = \mathcal{D}_{d} \left(\overline{A} h \right) := \left\{ \chi \in \left[\mathbb{R}^{d} : \begin{array}{c} c_{1}p \\ r_{s1}p \\ r_{s1}p \\ r_{s2}p \\ \end{array} \right\} \\ \text{and note that for each} \\ \text{X} \in \mathcal{D} \text{ Hare is } \mathcal{D} \left(r_{s1}p \\ r_{s1}p \\ \end{array} \right) \\ \text{Hardy-little wood maximal function.} \\ \text{Proof. Denote } \mathcal{D} := \mathcal{D}_{d} \left[\overline{A} h \right] := \left\{ \chi \in \left[\mathbb{R}^{d} : \begin{array}{c} c_{1}p \\ r_{s1}p \\ r_{s2}p \\ \end{array} \right\} \\ \text{and note that for each} \\ \text{X} \in \mathcal{D} \text{ Hare is } \mathcal{D} \left(r_{s1}p \\ r_{s2}p \\ \end{array} \right) \\ \text{Hardy-little wood maximal function.} \\ \text{Y} \left\{ \begin{array}{c} \mathcal{D} \\ \mathcal{D} \end{array} \right\} \\ \text{Hardy-little wood maximal function.} \\ \text{$$